新闻中心

PRESS CENTER

祝贺金辉乐、王舜老师在Advanced Energy Materials上发表论文 发表时间:2019年01月25日 流览量:273次 分享到:

中文标题:铁复合物纳米粒子原位封装到富集生物质杂原子的碳纳米管制备高性能超级电容器

英文标题:In Situ Encapsulation of Iron Complex Nanoparticles into Biomass-Derived Heteroatom-Enriched Carbon Nanotubes for High-Performance Supercapacitors

刊物名称及期号、页码:Advanced Energy Materials

作者姓名(英文):Jingjing Zhang, Huaping Zhao, Jun Li, Huile Jin, Xiaochun Yu, Yong Lei and Shun Wang.

摘要(英文):The capacitive performance of carbon materials could be enhanced by means of increasing the number of active sites, the surface area, and the porosity as well as through incorporating heteroatoms into the carbon framework. However, the charge storage through electric double-layer mechanism results in limited increase in capacitance of modified carbon materials. Herein, a simple and straightforward strategy is introduced for in situ synthesizing iron complex (FeX, which X includes O, C, and P) nanoparticles encapsulated into biomass-derived N, P-codoped carbon nanotubes (NPCNTs), using a natural resource, egg yolk, as heteroatom-enriched carbon sources and potassium ferricyanide as the precursor for iron complex. Compared with heteroatom-enriched carbon nanomaterials derived from the carbonization of egg yolk, the synergetic function of the heteroatom doping, the incorporation of FeX nanoparticles, and the unique structural characteristics endows the as-prepared sample with largely improved electrochemical performance. As expected, FeX@NPCNTs hybrid nanomaterials exhibit superior capacitive performance, including high specific capacitance, impressive rate performance, and excellent cycle stability. Using the as-prepared FeX@NPCNTs hybrid nanomaterials as electroactive materials, a symmetric supercapacitor with high capacity and a long-term cyclability is finally demonstrated (more than 99% capacitance retention after 50 000 cycles at a current density of 10 A g-1).

研究现状:

随着便携式电子产品市场需求的快速增长和电动汽车蓬勃发展可持续和可再生资源的能源生产不断增加,人们对电力或化学燃料能源的高效储存和输送的研究也在不断增加。在各种储能技术中,超级电容器由于其高电容量、快速充放电过程和非凡的循环稳定性,成为一种非常理想的电化学储能技术。然而,与可充电电池相比,超级电容器的关键问题之一是其较低的能量密度,这严重限制了它的应用因此,大量的研究致力于通过材料工程或电极纳米结构策略来提高超级电容器的能量密度。碳材料作为超级电容器的电活性材料已经得到了广泛的研究。由于其存在电容有限,能量密度低的问题并考虑到表面依赖的储能机制,研究者认为增加比表面积是提高碳材料电容的有效策略。

创新点:

通过一种简单通用的策略,利用自然资源,蛋黄,作为杂原子富集的碳源,铁氰化钾作为铁络合物FeX,其中X包括O, CP通过原位合成FeX纳米粒子,并将其封装到N, P共掺杂碳纳米管NPCNTs与生物质衍生的N, P共掺杂碳纳米管NPCNPs相比,制备的FeX@NPCNTs具有高达566.07 m2 g-1的高比表面积0.5 A g-1电流密度下,FeX@NPCNTs复合纳米材料制备的对称超级电容器电容提高了392.0 F g-1体积电容为1312.0 F cm-3,具有良好的电容率性能和长期循环稳定性。考虑到简的工艺和易得原材料,这种环保和经济的策略可以在探索新型超级电容器混合材料方面取得可期望的进展

原文链接:https://10.1002/aenm.201803221


新材料与产业技术研究院

​平台简介:温州大学新材料与产业技术研究院(简称“新材院”)是由温州高新技术产业开发区管理委员会和温州大学于2016年共同设立的具有事业单位性质...

查看全部

   版权所有 © 温州大学新材料与产业技术研究院        地址:温州海洋科技创业园   电话:0577-86689361   邮箱:wzumit@163.com 浙ICP备07006821号